46 research outputs found

    IntPred: flexible, fast, and accurate object detection for autonomous driving systems

    Get PDF
    Deep Neural-Network (DNN) based Object Detection is one of the most important and time-consuming stages of Autonomous Driving software in cars. In non-critical domains, the performance and energy requirements of object detection can be reduced at the cost of accuracy in the detected objects. This is not the case in a critical domain like automotive, for which a delicate balance between performance/energy overheads and accuracy of object detection must be found. We propose IntPred to achieve such a balance by leveraging on the fact that, with high frame rates, objects do not move significantly across frames. IntPred tailors object interpolation for the case of object detection in autonomous driving frameworks, in line with approaches devised for other domains, thus heavily reducing the performance requirements of full-fledged DNN-based object prediction. IntPred results in comparable accuracy to the original object detection, while saving more than 70% of the computations. The latter allows using lower-performance and cheaper platforms resulting in saving energy and reducing heat dissipation: for instance, in an NVIDIA Jetson TX2 platform, specific for autonomous driving systems, our technique increases the frame processing rate by 4.6x. IntPred also allows consolidating additional applications onto the same platform.This work has been partially supported by the Spanish Ministry of Economy and Competitiveness (MINECO) under grant TIN2015-65316-P, the SuPerCom European Research Council (ERC) project under the European Union’s Horizon 2020 research and innovation programme (grant agreement No. 772773), and the HiPEACNetwork of Excellence. MINECO partially supported Jaume Abella under Ramon y Cajal postdoctoral fellowship (RYC-2013-14717) and Leonidas Kosmidis under Juan de la Cierva-Formación postdoctoral fellowship (FJCI-2017-34095)Postprint (author's final draft

    Maternal Anti-Ro/SSA Autoantibodies and Prolonged PR Interval in a Competitive Athlete: Beyond Training-Induced Electrical Remodeling

    Get PDF
    : Prolongation of the PR interval is common among competitive athletes. However, further investigations should be performed when the PR interval is markedly prolonged. We report the case of a young male athlete with an autoimmune-mediated atrioventricular block due to circulating anti-Ro/SSA-antibodies in the mother (late progressive congenital form). (Level of Difficulty: Advanced.)

    On the use of probabilistic worst-case execution time estimation for parallel applications in high performance systems

    Get PDF
    Some high performance computing (HPC) applications exhibit increasing real-time requirements, which call for effective means to predict their high execution times distribution. This is a new challenge for HPC applications but a well-known problem for real-time embedded applications where solutions already exist, although they target low-performance systems running single-threaded applications. In this paper, we show how some performance validation and measurement-based practices for real-time execution time prediction can be leveraged in the context of HPC applications on high-performance platforms, thus enabling reliable means to obtain real-time guarantees for those applications. In particular, the proposed methodology uses coordinately techniques that randomly explore potential timing behavior of the application together with Extreme Value Theory (EVT) to predict rare (and high) execution times to, eventually, derive probabilistic Worst-Case Execution Time (pWCET) curves. We demonstrate the effectiveness of this approach for an acoustic wave inversion application used for geophysical explorationThis research was funded by the Horizon 2020 Framework Programme, grant number 801137, project RECIPEPeer ReviewedPostprint (published version

    Isolated slaughterhouse liver as model for normothermic perfusion after warm and cold ischemia: single case report

    Get PDF
    AbstractLiver transplantation is an ultimate procedure in patients suffering end-stage liver diseases. In these last years the donation after cardiac death (DCD) has increased the pool of potential liver donors. Different studies and procedures are involved in the prevention of the main ischemic problems during the reconditioning and resuscitation of the marginal livers. Normothermic extracorporeal liver perfusion (NELP) avoids prolonged cold storage damage that is the main cause of steatosis and biliary tract ischemia in transplanted patiens. Different porcine models have been studied and developed to understand the ischemia mechanism and to select the better technique for NELP.We conducted our study using a DCD pig liver model collected from slaughterhouse. Using extracorporeal membrane oxygenation, 2000 ml of total fluid containing autologous blood, lidocaine, heparin, antibiotics, glucose 10 % solution and flunixin, the NELP was achieved. The liver was perfused over 7 hours after 48 hours of cold storage (4C°), using Eurocollins solution. During the liver withdrawal in the slaughterhouse 20 minutes were waited to simulate the warm ischemia (WI) time. Histological samples, swab for bacterial grow, blood sample, temperature and pulse oximetry saturation were collected to assess the liver viability and function. These analyses revealed stable metabolism throughout perfusion identifying a cycles 2 hours length, coinciding with recovery of oxygen uptake rates to fresh liver, as described in literature.In summary the preliminary established model of isolated hemoperfused slatherhouse liver reveals the important role of the relation between cold storage and normothermic perfusion. Moreover this preliminary study justifies further investigation of the optimization of the treatment protocols and perfusion media

    Hydrolytic Profile of the Culturable Gut Bacterial Community Associated With Hermetia illucens

    Get PDF
    Larvae of the black soldier fly (BSF) Hermetia illucens (L.) convert organic waste into high valuable insect biomass that can be used as alternative protein source for animal nutrition or as feedstock for biodiesel production. Since insect biology and physiology are influenced by the gut microbiome, knowledge about the functional role of BSF-associated microorganisms could be exploited to enhance the insect performance and growth. Although an increasing number of culture-independent studies are unveiling the microbiota structure and composition of the BSF gut microbiota, a knowledge gap remains on the experimental validation of the contribution of the microorganisms to the insect growth and development. We aimed at assessing if BSF gut-associated bacteria potentially involved in the breakdown of diet components are able to improve host nutrition. A total of 193 bacterial strains were obtained from guts of BSF larvae reared on a nutritious diet using selective and enrichment media. Most of the bacterial isolates are typically found in the insect gut, with major representatives belonging to the Gammaproteobacteria and Bacilli classes. The hydrolytic profile of the bacterial collection was assessed on compounds typically present in the diet. Finally, we tested the hypothesis that the addition to a nutritionally poor diet of the two isolates Bacillus licheniformis HI169 and Stenotrophomonas maltophilia HI121, selected for their complementary metabolic activities, could enhance BSF growth. B. licheniformis HI169 positively influenced the larval final weight and growth rate when compared to the control. Conversely, the addition of S. maltophilia HI121 to the nutritionally poor diet did not result in a growth enhancement in terms of larval weight and pupal weight and length in comparison to the control, whereas the combination of the two strains positively affected the larval final weight and the pupal weight and length. In conclusion, we isolated BSF-associated bacterial strains with potential positive properties for the host nutrition and we showed that selected isolates may enhance BSF growth, suggesting the importance to evaluate the effect of the bacterial administration on the insect performance

    Destabilization of the Bacterial Interactome Identifies Nutrient Restriction-Induced Dysbiosis in Insect Guts

    Get PDF
    Stress-associated dysbiosis of microbiome can have several configurations that, under an energy landscape conceptual framework, can change from one configuration to another due to different alternating selective forces. It has been proposed—according to the Anna Karenina Principle—that in stressed individuals the microbiome are more dispersed (i.e., with a higher within-beta diversity), evidencing the grade of dispersion as indicator of microbiome dysbiosis. We hypothesize that although dysbiosis leads to different microbial communities in terms of beta diversity, these are not necessarily differently dispersed (within-beta diversity), but they form disrupted networks that make them less resilient to stress. To test our hypothesis, we select nutrient restriction (NR) stress that impairs host fitness but does not introduce overt microbiome selectors, such as toxic compounds and pathogens. We fed the polyphagous black soldier fly, Hermetia illucens, with two NR diets and a control full-nutrient (FN) diet. NR diets were dysbiotic because they strongly affected insect growth and development, inducing significant microscale changes in physiochemical conditions of the gut compartments. NR diets established new configurations of the gut microbiome compared to FN-fed guts but with similar dispersion. However, these new configurations driven by the deterministic changes induced by NR diets were reflected in rarefied, less structured, and less connected bacterial interactomes. These results suggested that while the dispersion cannot be considered a consistent indicator of the unhealthy state of dysbiotic microbiomes, the capacity of the community members to maintain network connections and stability can be an indicator of the microbial dysbiotic conditions and their incapacity to sustain the holobiont resilience and host homeostasis

    Extra virgin olive oil extracts of indigenous Southern Tuscany cultivar act as anti-inflammatory and vasorelaxant nutraceuticals

    Get PDF
    Extra virgin olive oil (EVOO) is the typical source of fats in the Mediterranean diet. While fatty acids are essential for the EVOO nutraceutical properties, multiple biological activities are also due to the presence of polyphenols. In this work, autochthonous Tuscany EVOOs were chemically characterized and selected EVOO samples were extracted to obtain hydroalcoholic phytocomplexes, which were assayed to establish their anti-inflammatory and vasorelaxant properties. The polar extracts were characterized via 1H-NMR and UHPLC-HRMS to investigate the chemical composition and assayed in CaCo-2 cells exposed to glucose oxidase or rat aorta rings contracted by phenylephrine. Apigenin and luteolin were found as representative flavones; other components were pinoresinol, ligstroside, and oleuropein. The extracts showed anti-inflammatory and antioxidant properties via modulation of NF-ÎşB and Nrf2 pathways, respectively, and good vasorelaxant activity, both in the presence and absence of an intact endothelium. In conclusion, this study evaluated the nutraceutical properties of autochthonous Tuscany EVOO cv., which showed promising anti-inflammatory and vasorelaxant effects

    Measuring social response to different journalistic techniques on Facebook

    Get PDF
    Recent studies have shown that online users tend to select information that adheres to their system of beliefs, ignore information that does not, and join groups that share a common narrative. This information environment can elicit tribalism instead of informed debate, especially when issues are controversial. Algorithmic solutions, fact-checking initiatives, and many other approaches have shown limitations in dealing with this phenomenon, and heated debate and polarization still play a pivotal role in online social dynamics (e.g. traditional vs. anti-establishment polarization). To understand the effect of different communication strategies able to smooth polarization, in this paper, together with Corriere della Sera, a major Italian news outlet, we measure the social response of users to different types of news framing. We analyse users’ reactions to 113 ad-hoc articles published on the newspaper’s Facebook page and the corresponding news articles on the topic of migration, published from March to December 2018. We examine different journalistic techniques and content types by analyzing their impact on user comments in terms of toxicity, criticism of the newspaper, and stance concerning migration. We find that visual pieces and factual news reports elicit the highest level of trust in the media source, while opinion pieces and editorials are more likely to be criticized. We also notice that data-driven pieces elicit an extremely low level of trust in the news source. Furthermore, coherently with the echo chambers behaviour, we find social conformity strongly affecting the commenting behaviour of users on Facebook

    Phenomics and Genomics Reveal Adaptation of Virgibacillus dokdonensis Strain 21D to Its Origin of Isolation, the Seawater-Brine Interface of the Mediterranean Sea Deep Hypersaline Anoxic Basin Discovery

    Get PDF
    The adaptation of sporeformers to extreme environmental conditions is frequently questioned due to their capacity to produce highly resistant endospores that are considered as resting contaminants, not representing populations adapted to the system. In this work, in order to gain a better understanding of bacterial adaptation to extreme habitats, we investigated the phenotypic and genomic characteristics of the halophile Virgibacillus sp. 21D isolated from the seawater-brine interface (SBI) of the MgCl2-saturated deep hypersaline anoxic basin Discovery located in the Eastern Mediterranean Sea. Vegetative cells of strain 21D showed the ability to grow in the presence of high concentrations of MgCl2, such as 14.28% corresponding to 1.5 M. Biolog phenotype MicroArray (PM) was adopted to investigate the strain phenotype, with reference to carbon energy utilization and osmotic tolerance. The strain was able to metabolize only 8.4% of 190 carbon sources provided in the PM1 and PM2 plates, mainly carbohydrates, in accordance with the low availability of nutrients in its habitat of origin. By using in silico DNA-DNA hybridization the analysis of strain 21D genome, assembled in one circular contig, revealed that the strain belongs to the species Virgibacillus dokdonensis. The genome presented compatible solute-based osmoadaptation traits, including genes encoding for osmotically activated glycine-betaine/carnitine/choline ABC transporters, as well as ectoine synthase enzymes. Osmoadaptation of the strain was then confirmed with phenotypic assays by using the osmolyte PM9 Biolog plate and growth experiments. Furthermore, the neutral isoelectric point of the reconstructed proteome suggested that the strain osmoadaptation was mainly mediated by compatible solutes. The presence of genes involved in iron acquisition and metabolism indicated that osmoadaptation was tailored to the iron-depleted saline waters of the Discovery SBI. Overall, both phenomics and genomics highlighted the potential capability of V. dokdonensis 21D vegetative cells to adapt to the environmental conditions in Discovery SBI
    corecore